Chemistry can be used to help us fight Climate Change?

Chemistry can be used to help us fight Climate Change?

I came across this article on Medium. Medium is a fantastic resource that has many different articles written by all manner of people on many different subjects. This article is all about Green Chemistry and how we can use this science to help us.

Now is the time to look at the circular economy on the micro-level. Much as fast expanding markets require us to look at the economy at the granular level, circular economy principles require consideration of resources on a molecular level. Chemistry is the study of matter, and “green chemistry” — or what we in the business world might call molecular technology — will be a key component in closing the overall consumption loop. Green chemistry, or sustainable chemistry, involves creation on the molecular level: devising chemical reactions that give rise to new products and processes that have the ability to meet sustainability goals, such as becoming more energy-efficient, and reducing the amount of waste or harmful matter found in the environment.

Some major themes in green chemistry today include reducing our reliance on nonrenewable energy sources, reducing industrial carbon footprints, breaking down landfill waste, and taking advantage of abundant resources (waste) that nobody wants — like carbon dioxide, for example. Carbon dioxide has a deserved reputation of being a damaging greenhouse gas that is pushing up the rate of global warming. Green chemistry has been pivotal in coming up with ways to use CO2 as a resource instead of having it become a waste product stuck in our air. For instance, chemists found that when CO2 molecules are kept in a transitive state, or what’s known as transcritical CO2, the dynamic state in which CO2 is at the point of converting from a liquid to a gas, it can be used as an industrial refrigerant to keep things cool. The application of transcritical CO2 is clear. We have a lot of buildings that need to stay cold: supermarkets, food processing facilities, warehouses, and even ice skating rinks. Thanks to transcritical CO2, a building’s climate impact can be reduced by approximately 15% while also replacing chlorofluorocarbons and hydrofluorocarbons — greenhouse gases that are commonly used for refrigeration.

The following examples demonstrate that understanding green chemistry can create a circle of virtuous economic activity that provides competitive advantages for businesses.

Improving paint performance while cutting costs

Green chemistry has reduced the carbon footprint for the Dow Chemical Company’s paint production. Titanium dioxide is an important additive to paint, but is also expensive and energy-intensive to make. It acts as a base pigment in paint that covers the original color underneath the new coat of paint. Through research to find greener chemical reactions, Dow Chemical developed a polymer EVOQUE™ that improves the function of titanium dioxide by coating it and enabling it to be dispersed more evenly and thoroughly. As a result, the effectiveness of paint was actually improved while requiring less titanium dioxide to make. Not only was the product improved, but costs were cut because the paint now required less titanium dioxide to make. Moreover, a lifecycle assessment (LCA) of the production of paint showed that the reduction of titanium dioxide through the use of EVOQUE™ in outdoor house paint reduced the carbon footprint of the paint by 22% and consumed 30% less water. EVOQUE™ also reduced the amount of VOCs (volatile organic compounds) in the paint, which contributes to smog (also known as tropospheric ozone). This is green chemistry in action.

Article Continued on Medium………

Topics: Guest Blogger, Science

Green Element News

Sign up to Green Element Monthly to keep up to date with new legislation and developments in the environmental sector.

Recent blog articlesRSS Feed